

# **DMET**<sup>™</sup> Plus Solution

## Translating pharmacogenetics

Treat everyone as an individual



### **DMET™ Plus Solution**

## Translating pharmacogenetics into practice

Understanding the common variation in genes encoding for drug metabolism enzymes and drug transporters has the potential to significantly impact clinical research by predicting the impact of an individual's genetic variation on metabolic capacity. This understanding takes us one step closer towards the vision of personalized medicine by helping to avoid adverse drug responses, increasing treatment efficacy and providing both improved healthcare outcomes as well as substantial economic benefits.

### DMET (Drug Metabolizing Enzymes and Transporters) Plus Solution

**Enables the cost-effective measurement of existing and new metabolic pathway involvement** – by providing broad coverage of relevant pharmacogenetic markers (1,936 genetic variants across 231 relevant genes) *in one assay* 

**Provides high confidence in results** – outstanding assay performance of >99% average sample call rate and >99.8% average sample reproducibility enables the accurate generation of haplotypes and supports longitudinal and other clinical research studies

Supports the rapid and comprehensive interpretation of genotyping data – the DMET™ Console Software tool translates genotyping data through to star allele classification and to predicted metabolizer status, allowing the rapid implementation of genetic understanding in clinical research

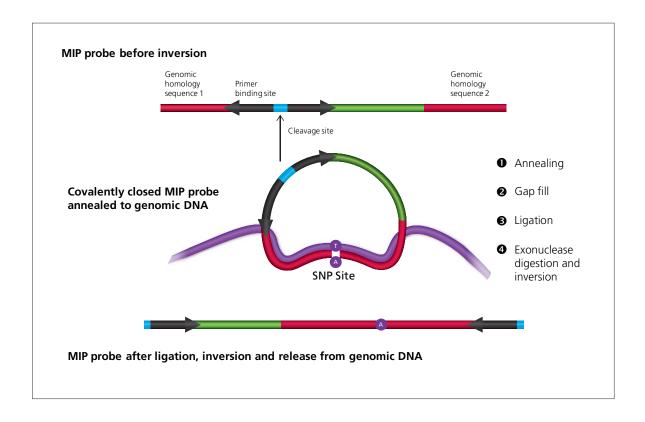
### Applications:

- Pharmacology research discovery and application of novel biomarkers resulting from pharmacogenetic associations
- Translational clinical research longitudinal clinical research studies designed to generate comprehensive metabolic profiles
- Pre-clinical research and development –
   approximately 30% of drug candidates fail during
   development due to poor pharmacokinetics
   and toxicity, which can be strongly influenced
   by genetically determined variation in drug metabolizing genes and transporter genes
- Industry sponsored clinical research trials –
  building databases of known genotypes to show
  effects of known metabolic pathways in intermediate
  and poor metabolizers and to confirm metabolic
  pathway involvement in newly discovered drug
  metabolism associations

#### The DMET Plus Solution:

- Assay Molecular Inversion Probe (MIP) panel amplifies the precise target DNA of interest
- Array allele-specific oligonucleotide array provides a single color readout on the GeneChip® Scanner 3000 or GeneChip® Scanner 3000Dx v.2, installed in over 2,000 labs globally
- Analysis software DMET Console Software provides both the flexibility for user-defined reporting as well as the most comprehensive translation from genotypic data to star allele classification to predicted metabolizer status for the most clinically relevant genes

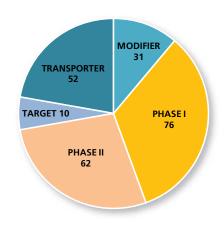



## **Outstanding data quality**

| Performance specifications*             |        |
|-----------------------------------------|--------|
| Average sample call rate                | ≥99%   |
| Average sample concordance to reference | ≥99.5% |
| Average sample reproducibility          | ≥99.8% |
| Average sample pass rate                | >95%   |

<sup>\*</sup>During the development of the DMET™ Plus Panel, an average sample pass rate in excess of 95 percent was observed, based on the performance of more than 3,500 samples processed by six sites (three external and three internal). Markers have been evaluated across a minimum of 1,200 individuals including 597 individuals from the extended HapMap population data.

## Enabled by a product design that confers high specificity:

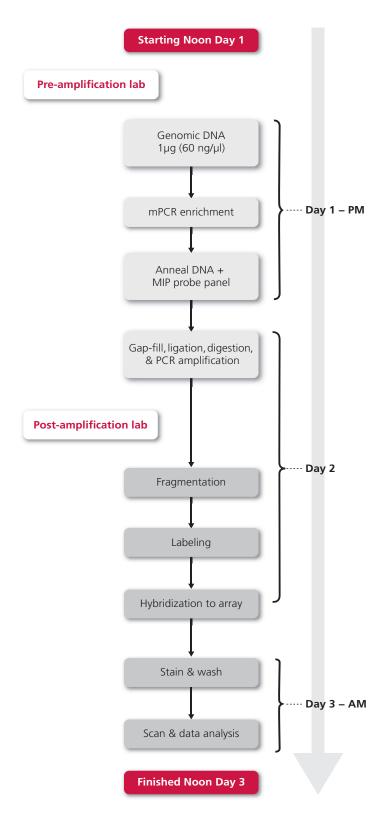

- Initial multiplexed PCR step to remove pseudogene bias (especially important for CYP2D6) prior to Molecular Inversion Probe (MIP) amplification, ensuring the highly specific detection of causative variation
- MIP amplification confers multiple levels of enzyme-mediated specificity—polymerization/gap-fill, ligation
  and exonuclease digestion; exonuclease digestion reduces background from residual probes and gDNA
  prior to amplification
- Multiple array capture probes with a unique probe tiling strategy enable highly accurate detection even in the presence of known neighboring SNPs



## Comprehensive and relevant genetic content

- 1,936 SNP, copy number, and indel markers across 231 genes including
  many genetic variants that cannot easily be detected by other technologies
  (e.g. SNPs and indels with secondary polymorphisms in close proximity,
  triallelic markers, and variants from multi-gene families)
- 100% coverage of PharmaADME "Core ADME Genes" (32 genes) and 95% coverage of PharmaADME "Core Markers" (185 variants)
- Extensive coverage beyond PharmaADME core content to cover common and functional variants associated with hepatic detoxification for processing xenobiotics and environmental toxins including:
  - Markers associated with newly described adverse drug events e.g., CYP3A4\_392A>G
  - Structural variants in transporter genes an important pharmaceutical target e.g., ABCG2\_c.421C>A(Q141K)
  - Enrichment for mutations in ADME regulatory genes e.g., PPARD\_c.-101-25241A>G
  - Inclusion of many population specific markers e.g., VKORC1\_c.-1639G>A

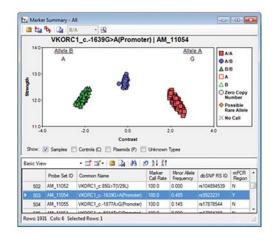





|         |         |           | Genes repre | esented by DM | ET™ Plus Pane | I        |           |           |
|---------|---------|-----------|-------------|---------------|---------------|----------|-----------|-----------|
| ABCB1   | ALDH2   | COMT      | CYP4F3      | EPHX2         | MAOA          | RPL13    | SLC22A14  | TBXAS1 *  |
| ABCB4   | ALDH3A1 | CROT      | CYP4F8      | FAAH          | MAOB          | RXRA     | SLC25A27  | TPMT *p   |
| ABCB7   | ALDH3A2 | CYP1A1 *  | CYP4F11     | FMO1          | MAT1A         | SERPINA7 | SLC28A1   | TPSG1     |
| ABCB11  | AOX1    | CYP1A2 *p | CYP4F12     | FMO2 *        | METTL1        | SLC5A6   | SLC28A2   | TYMS      |
| ABCC1   | APOA2   | CYP1B1 *  | CYP4Z1      | FMO3          | NAT1 *p       | SLC6A6   | SLC28A3   | UGT1A1 *p |
| ABCC2   | ARNT    | CYP2A6 *p | CYP7A1      | FMO4          | NAT2 *p       | SLC7A5   | SLC29A1   | UGT1A3 *  |
| ABCC3   | ARSA    | CYP2A7    | CYP7B1      | FMO5          | NNMT          | SLC7A7   | SLC29A2   | UGT1A4 *  |
| ABCC4   | ATP7A   | CYP2A13*  | CYP8B1      | FMO6          | NQO1          | SLC7A8   | SLCO1A2   | UGT1A5    |
| ABCC5   | ATP7B   | CYP2B6 *p | CYP11A1     | G6PD          | NR1I2         | SLC10A1  | SLCO1B1*p | UGT1A6 *  |
| ABCC6   | CA5P    | CYP2B7P1  | CYP11B1     | GSTA1         | NR1I3         | SLC10A2  | SLCO1B3   | UGT1A7 *  |
| ABCC8   | CBR1    | CYP2C8 *p | CYP11B2     | GSTA2         | NR3C1         | SLC13A1  | SLCO2B1*  | UGT1A8 *  |
| ABCC9   | CBR3    | CYP2C9 *p | CYP17A1     | GSTA3         | ORM1          | SLC15A1  | SLCO3A1   | UGT1A9 *  |
| ABCG1   | CDA *   | CYP2C18   | CYP19A1*    | GSTA4         | ORM2          | SLC15A2* | SLCO4A1   | UGT1A10*  |
| ABCG2   | CES2    | CYP2C19*p | CYP20A1     | GSTA5         | PGAP3         | SLC16A1  | SLCO5A1   | UGT2A1    |
| ABP1    | CHST1   | CYP2D6 *p | CYP21A2     | GSTM1 *p      | PNMT          | SLC19A1  | SPG7      | UGT2B4    |
| ADH1A   | CHST2   | CYP2E1 *p | CYP24A1     | GSTM2         | PON1          | SLC22A1  | SPN       | UGT2B7 *p |
| ADH1B   | CHST3   | CYP2F1 *  | CYP26A1     | GSTM3         | PON2          | SLC22A2* | SULT1A1*  | UGT2B11   |
| ADH1C   | CHST4   | CYP2J2 *  | CYP26C1     | GSTM4         | PON3          | SLC22A3  | SULT1A2   | UGT2B15*  |
| ADH4    | CHST5   | CYP2S1 *  | CYP27A1     | GSTM5         | POR           | SLC22A4  | SULT1A3   | UGT2B17*  |
| ADH5    | CHST6   | CYP3A4 *p | CYP27B1     | GSTO1         | PPARD         | SLC22A5  | SULT1B1   | UGT2B28   |
| ADH6    | CHST7   | CYP3A5 *p | CYP39A1     | GSTP1 *p      | PPARG         | SLC22A6  | SULT1C2   | UGT8      |
| ADH7    | CHST8   | CYP3A7 *p | CYP46A1     | GSTT1 *       | PPP1R9A       | SLC22A7  | SULT1C4   | VKORC1 *p |
| AHR     | CHST9   | CYP3A43*  | CYP51A1     | GSTT2         | PRSS53        | SLC22A8  | SULT1E1   | XDH       |
| AKAP9   | CHST10  | CYP4A11   | DCK         | GSTZ1         | PTGIS *       | SLC22A11 | SULT2A1   |           |
| ALB     | CHST11  | CYP4B1 *  | DPYD *      | HMGCR         | QPRT          | SLC22A12 | SULT2B1   |           |
| ALDH1A1 | CHST13  | CYP4F2 *  | EPHX1       | HNMT          | RALBP1        | SLC22A13 | SULT4A1   |           |

<sup>\* =</sup> translated to star allele classification p = translated to predicted phenotype/metabolizer status

## **Comprehensive interpretation analysis**


### DMET™ Plus Workflow – 48 hrs to results



### DMET<sup>™</sup> Console Software offers:

- Single-sample genotyping pre-defined marker boundaries allow samples to be processed in batches of any size with no impact on reported genotypes
- Easy-to-view data cluster visualization for SNP and copy number markers
- Customized content data reports user-defined marker lists for initial genotyping as well as final reports
- Translation of genotypes into gene-level diplotypes using star allele nomenclature and then into a metabolizer status bin that indicates the relative level of metabolic activity, for example, the metabolic status bin that describes ultra-rapid metabolizers (UM), extensive metabolizers (EM), intermediate metabolizers (IM), and poor metabolizers (PM)

#### **DMET™ Plus marker summary**



#### **Example translation for UGT2B7 gene**

| UGT              | UGT2B7 Allele Names |     |     |          |         | Step 1 - Genotypes |    |               |               |              |
|------------------|---------------------|-----|-----|----------|---------|--------------------|----|---------------|---------------|--------------|
| cDNA<br>Position | Change              | *1a | *1g | *2c      | *2a     | *2e                | *3 | sample 1      | sample 2      | sample 3     |
| -327G>A          | Promoter            | G   | G   | Α        | G       | G                  | G  | G/G           | A/A           | G/A          |
| -161C>T          | Promoter            | С   | C   | T        | C       | C                  | С  | C/C           | T/T           | C/T          |
| 211G>T           | A71S                | G   | G   | G        | G       | G                  | T  | G/G           | G/G           | G/G          |
| 735A>G           | T245T               | Α   | G   | Α        | Α       | Α                  | Α  | A/G           | A/A           | A/G          |
| 801T>A           | P267P               | Т   | Т   | Α        | Т       | Α                  | Т  | T/T           | A/A           | T/A          |
| 802C>T           | H268Y               | С   | C   | T        | T       | T                  | C  | C/C           | T/T           | C/T          |
| 1062C>T          | Y354Y               |     |     |          |         |                    |    |               |               |              |
|                  |                     |     |     |          |         |                    |    | Step 2 - Hap  | lotypes (star | allele class |
|                  |                     |     |     |          |         |                    |    | *1a/*1g       | *2c/*2c       | *1g/*2c      |
|                  |                     |     |     |          |         |                    |    |               |               |              |
|                  |                     |     | /   | Allele / | Activit | У                  |    | Step 3 - Alle | le Activity   |              |
|                  |                     | -   | - N |          |         | ?                  | -  | ⇒/⇒           | 金/金           | → / ☆        |

Ultrarapid

## The GeneChip® System 3000 Instrumentation Platform

Flexible, proven, powerful

This industry-recognized instrumentation combined with innovative assays provide a fully integrated system for all your genetic analysis needs. The DMET<sup>™</sup> Plus Solution may be run on either the GeneChip® System 3000 or the GeneChip® System 3000Dx v.2.

The GeneChip® System (GCS) 3000Dx v.2 is FDA-cleared and includes the GeneChip® Scanner 3000Dx v.2 with AutoLoaderDx, GeneChip® Fluidics Station 450Dx v.2, and Workstation with Affymetrix Molecular Diagnostic Software (AMDS). The GeneChip® Hybridization Oven 645 is also required. With this complete platform, you have everything you need for hybridizing, washing, staining, and scanning of microarrays.

| GeneChip® Syst                       | tem 3000Dx v.2 assay menu |           |
|--------------------------------------|---------------------------|-----------|
| Application area                     | RUO*                      | IVD**     |
| 3' IVT expression analysis           | $\sqrt{}$                 | $\sqrt{}$ |
| Whole-transcript expression analysis | $\sqrt{}$                 | $\sqrt{}$ |
| Genotyping/copy number               | $\sqrt{}$                 |           |
| Cytogenetic analysis                 | $\checkmark$              |           |
| Drug metabolism/pharmacogenomics     | $\sqrt{}$                 | $\sqrt{}$ |
| miRNA gene regulation                | $\checkmark$              |           |
| Targeted resequencing                | $\sqrt{}$                 |           |
| Custom assays                        | $\checkmark$              | $\sqrt{}$ |

<sup>\* &</sup>quot;Research Use Only" (RUO) array requires an array-specific Assay Software Module (ASM). A custom ASM can be developed for any GeneChip® Array.

#### **Ordering information**

| Part number | Description                                                                                                  |
|-------------|--------------------------------------------------------------------------------------------------------------|
| 901268      | DMET™ Plus Premier Pack Contains sufficient reagents and arrays for 48 reactions (45 samples and 3 controls) |
| 901495      | DMET™ Plus Starter Pack Contains sufficient reagents and arrays for 8 reactions (7 samples and 1 control)    |

#### **World-class support**

Affymetrix offers an expanding portfolio of customer support and services—from training and instrument maintenance to consulting and compliance—led by our world-class team of multilingual technical experts, field application scientists (FAS), and regional field service engineers (FSE). For more information please visit <a href="https://www.affymetrix.com/service">www.affymetrix.com/service</a>.

Affymetrix, Inc. Tel: +1-888-362-2447 • Affymetrix UK Ltd. Tel: +44-(0)1628-552550 • Affymetrix Japan K.K. Tel: +81-(0)3-6430-4020 Panomics Solutions Tel: +1-877-726-6642 panomics.affymetrix.com • USB Products Tel: +1-800-321-9322 www.usb.affymetrix.com

www.affymetrix.com Please visit our website for international distributor contact information.

"For Research Use Only. Not for use in diagnostic procedures."

P/N CL01351 Rev. 1

@Affymetrix, Inc. All rights reserved. Affymetrix®, Axiom®, Command Console®, CytoScan®, DMET™, GeneAtlas®, GeneChip®, GeneChip-compatible™, GeneTitan®, Genotyping Console™, myDesign™, NetAffx®, OncoScan™, Powered by Affymetrix™, PrimeView™, Procarta®, and QuantiGene® are trademarks or registered trademarks of Affymetrix, Inc. All other trademarks are the property of their respective owners.

**Products may be covered by one or more of the following patents:** U.S. Patent Nos. 5,445,934; 5,744,305; 5,945,334; 6,140,044; 6,399,365; 6,420,169; 6,551,817; 6,733,977; 7,629,164; 7,790,389 and D430,024 and other U.S. or foreign patents. Products are manufactured and sold under license from OGT under 5,700,637 and 6,054,270

<sup>\*\*</sup>FDA-cleared, IVD or CE-marked test developed by a third-party company on the Affymetrix® GCS 3000Dx platform.